デジタルパソロジー ガイドライン

はじめに

本ガイドラインは、病理診断分野における情報通信技術、特にデジタル画像技術の応用研究の進展、whole slide imaging (WSI)の発展を受け、日本病理学会デジタルパソロジー検討委員会が主体となって作成されたものである。

これまで、デジタルパソロジー検討委員会の作成した「デジタル病理画像を用いた病理診 断のための手引き |、委員会が作成を依頼しデジタルパソロジー技術基準検討会が作成した

「病理診断のためのデジタルパソロジーシステム技術基準」が公開されている。一方、厚生 労働省、国立研究開発法人日本医療研究開発機構の補助のもと、WSI を用いた病理診断精 度に関するエビデンスが積み重ねられている。本ガイドラインでは、このエビデンス、およ び現在出版されている文献をもとに、5 個のクリニカルクエスチョン (CQ)、それに対する 回答を提示した。いずれも「診断は可能か」など、推奨度をつけ難い CQ であるため推奨度 は省略されている。

本ガイドラインを「デジタル病理画像を用いた病理診断のための手引き」「病理診断のためのデジタルパソロジーシステム技術基準」とともに活用していただければ幸いである。

2018年11月23日

日本病理学会デジタルパソロジー検討委員会 (五十音順)

> 有廣光司 上原久典 斉藤勝彦 佐々木毅 佐藤勇一郎 森一郎 森一郎 森田英一(委員長) 安岡弘直 吉澤辺みか

ガイドライン作成にご協力いただいた先生方(敬称略、五十音順) 青山肇、伊藤智雄、福岡順也、前田一郎、吉見直己 Answer: WSI を用いて病理診断を行うことが可能である。ただし、各施設において少な くとも 60 症例を用いて WSI 診断とガラススライドを用いた診断を比較する検証実験を実 施し、その違いについて十分に検証を行い、施設として安全性を担保する必要がある。グラ ム染色標本やギムザ染色標本における菌体の観察には限界があり、これらの限界について 各施設で認識と対応策を考慮する必要がある。

解説:

WSI は 2000 年初頭に入って種々のベンダーにより開発され、その臨床導入の可能性が考 慮された。WSI 機器の実証研究の重要性が認識されたが、最初に実施された WSI による validation study は 2006 年に米国で行われ、そこでは 25 症例の病理報告書が比較検討され た。その結果、25 症例中 17 例で診断の一致がみられ、スキャンの質は顕微鏡に劣るが診断 報告書を作成する上では問題のないレベルであることが示された。しかし、症例は少なくエ ビデンスレベルは低いものであった[1]。2011 年以降は多くの検証研究が発表された(表 1)。[1-22]

北米における WSI のガイドライン [23]では、各施設が自施設内において最低 60 例の症 例を用いて、HE 染色標本、細胞診(パパニコロウ染色)標本、凍結標本、血液塗抹標本の カテゴリーごとに検証することを強く勧めている。免疫染色への応用では更に 20 例の検討 が勧められるなど、異なる染色への対応も別途必要としている[2]。同様の検証実験の重要 性はカナダのガイドラインでも強調されており、本邦でも各施設における検証実験を強く 推奨する必要があろう。

CAP およびカナダ病理学会は、共通して次の 12 項目の検証実験を推奨している。

- 1、WSIを実臨床に応用する病理ラボは自施設で検証実験を実施する。
- 2、検証実験は WSI を用いて実際の臨床と同様の状況で実施されるべきで、用いる組織も 実際に使われるものを考慮するべきである。
- 3、検証実験は実際に使用されているもの(多くは顕微鏡を用いたガラススライドを用いた診断)との比較にて実施されるべきである。
- 4、検証は WSI システムを全て網羅して実施されるべきである(注)。
- 5、ガラススライドを用いた診断との乖離が生じた場合は、そのすべてで原因を再検証す る。
- 6、WSIを用いるトレーニングを受けた一人もしくは複数の病理医が検証実験に加わる。
- 7、検証実験では、HE 染色標本、細胞診(パパニコロウ染色)標本、凍結標本、血液塗抹 標本などの各々のカテゴリーにおいて日常診療に良く遭遇する少なくとも 60 例を検証 する。

- 8、検証実験は、同一の観察者による WSI を用いた診断とガラススライドを用いた診断の 比較にて実施する。
- 9、検証実験における観察の順序はランダムでもそうでなくてもよい。
- 10、 検証はガラススライドと WSI をそれぞれ別に観察し,その差異が検証対象となる が,記憶を wash out するためにいずれかの評価をしたのちは少なくとも 2 週間の期間 をあける必要がある。
- 11、 検証実験において、すべての標本がスキャンされているかの検証も同時に実施す る。
- 12、 検証実験の記録(方法、検証結果、最終承認など)を保存する。

注: "WSI システム"とは WSI スキャナー,制御 PC (ソフトウェア含),ネットワーク,モ ニターといった WSI を用いて病理診断を行う際に必要な機器類であり,検証はそれを個別 に行うのではなく,一体として行う。使用する機器は必ずしも医療機器申請を行ったもので ある必要はないが,WSI システムによる病理診断を始める際,あるいは変更になった際は, システム全体として評価をする必要がある。各種機器の適正仕様に関しては,技術基準書を 参照のこと。

2017 年になり FDA や本邦では PMDA が WSI 機器を承認しているが、承認された機器 でも、施設ごとに異なる条件がありうるため、施設ごとの検証実験が必要であると 2018 年 に CAP のデジタルパソロジー委員会が示している。十分な検証を行った後に各施設にて WSI の限界を熟知した臨床応用を実践することが必要である。

HE 染色のプロトコールの最適化は各々の施設で独自に行うことが求められる。AMED 森 班の報告では、自動染色装置をもちいて,染色液の染色時間,分別時間を変え,11 パター ンの HE 染色ガラススライドを作成し1社の WSI 取り込み装置にてスキャン,それぞれの パターンを評価するために種々の拡大で画像をキャプチャし,全国 33 人の病理医にアンケ ート形式で評価を行ったところ(優,良,可,不可)、多くの病理医が優とした染色パター ンは7パターン(63.6%)とばらけた。このことは、HE 染色画像の標準化は最終的に困難 であることを示している。病理診断に当たっては,染色プロトコールについて,各施設で十 分な検討をおこなうことが必要である。

なお、AMED 森班では9つの異なる分野において診断困難のため確定診断が与えられて いない計 270 症例を集積し、WSI を用いて各分野のエキスパートによりコンサルテーショ ンを行った。その結果、30%において診断が確定され、27%において異なる診断が出される ことが示された。またその 27%の症例のうち 89%の症例ではコンサルトによる診断がより 正しいとコンセンサスにより判断された。こういった診断確定困難例は、症例全体の約 5% に相当した。つまり、全体の 1.2%の症例において、WSI のコンサルテーションにより誤っ た診断が修正されることが示され、WSI を用いたコンサルテーションの有用性が確認され

Author	Year	Journal	Validation	Outcome	Eviden	Other points
			target		ce	
					level	
Gilbertson	200	BMC Clin	25 mix cases by	17/25	IV	
JR et al	6	Pathol	3 pathologists	concordant		
				, 8/25		
				discrepanc		
				у		
Jukic DM	201	Arch	mixed 101	major	III	
et al	1	Pathol Lab	cases by 3	discrepanc		
		Med	pathologists	y (3,3,7%)		
Al-Janabi S	201	Hum	breast 100	kappa =	IV	82% success
et al	2	Pathol	cases	0.92		digital Dx
						Utricht
Al-Janabi S	201	J Clin	GI tract 100	95%	IV	5 surgical/95
et al	2	Pathol	cases	identical		biopsy
				5% minor		
Al-Janabi S	201	J Clin	dermatopathol	94%	IV	
et al	2	Pathol	ogy 100 cases	concordant		
				. 6% minor		
Al-Janabi S	201	J Clin	pediatric 100	90% for	IV	80
et al	3	Pathol	cases	WSI, 93%		consecutive
				for glass		bx and 20
						placenta
Bauer T et	201	Arch	607 all surgical	major/min	III	hematopatho
al	3	Pathol Lab	cases	or (WSI		logy not
		Med		1.65/2.31		included
				%,		
				microscope		
				0.99/4.93		
				%)		
Krishnamu	201	Arch	100 breast	WSI 90.5,	III	

表1報告された WSIの検証研究リスト(文献 1-22 のまとめ)

rthy S et al	3	Pathol Lab	cases	microscope		
		Med		92.1%		
Pantanowit	201	Arch	guideline	training	III	metaanalysis
z L et al	3	Pathol Lab	metaanalysis of	20/60/200:		of research
		Med	27 papers	95%,98%,		non RCT
				98%		
Al-Janabi S	201	J Renal Inj	100 GU	13/100	III	
et al	4	Prev	cases(kidney,	cases		
			bladder)	discordant,		
				however		
				6/13, WSI		
				Dx was		
				better.		
Buck T et	201	J Pathol	150 routine	microscope	III	3 months
al	4	Inform	cases by 6	3.3-13.3%,		washout
			pathologists	WSI 2.1-		time
				10.1%		
				discordanc		
				е		
Reyes C et	201	J Pathol	103 breast	discordanc	III	
al	4	Inform	CNB by 3	e		
			pathologists	(microscop		
				e 0,4,7%		
				and WSI		
				1,1,4%)		
Ordi J et al	201	J Clin	452 GYN by 2	major/min	III	miss small
	5	Pathol	pathologists	or		lesions in
				(2.0%/3.8		both
				%)		microscope
						and WSI
Peckmezci	201	J Pathol	97 neuro by 2	concordan	III	mitosis and
M et al	6	Inform	pathologists	ce: 94.9		nuclear
				and 88%.		details are
						not identical
Snead D et	201	Histopatho	3017 cases by	concordan	III	2666 biopsy,
al	6	logy	17 pathologists	ce 98.7%.		340 surgery,

				major/min		11 frozen 10
				or (21/72		organs
				cases)		
				12/21		
				microscope		
				better,		
				9/21 WSI		
				better		
Wack K et	201	J Pathol	33 cases by 16	inter-		all in
al	6	Inform	pathologists	reader		synoptic
			>10,000 pairs	agreement		reports
			-	(glass:		•
				76.5, WSI:		
				79.1%)		
Kent M et	201	JAMA	499 skin cases	concordan	III	
al	7	Dermatol	by 3	ce to		
			dermatopathol	groundtrut		
			ogists	h WSI:		
				94%,		
				microscope		
				94%		
Saco A et al	201	Dig Liver	176 liver	96.6% and	III	
	7	Dis	biopsy by 2	90.3%		
			pathologists	agreement		
				s		
Tabata K et	201	Pathol Int	1070 cases by 9	major/min	III	Japanese
al	7		pathologists	or (0.9%,		validation
				3.5%)		study
Araujo	201	Virchows	70 oral cases by	97%	III	
ALD et al	8	Arch	2 pathologists	agreement		
Lee J et al	201	Am J	77 skin	326/333	III	333 findings
	8	Dermatopa	inflammatory	excellent,		in 77 cases
		thol	disease by 2	6/333		
			pathologists	adequate,		
				1/333(gra		
				m positive		

				cocci) no		
Mukhopad	201	Am J Surg	1992 mix cases	major	III	both biopsy
hyay S et al	8	Pathol	by 16	discrepanc		and surgical
			pathologists	у		materials
				(microscop		
				e 4.6%,		
				WSI 4.9%)		

表中の Evidence level は、次の通り。

I:システマティックレビューやメタアナリシス

II:1つ以上のランダム化比較試験

III:非ランダム化比較試験

IV:分析疫学的研究(コホート研究や症例対照研究)

V:記述研究(症例報告や症例集積研究)

VI:エキスパートオピニオン

検索年限 出版年 2008 年 1 月 1 日~ 2018 年 6 月 30 日

検索式:

Pubmed

- 1. Whole Slide Image + Primary Diagnosis
- 2. Whole Slide Imaging + Primary Diagnosis

除外:総説、image analysis、cytology 上の結果にハンドサーチで調べた文献を加えて選定した。

参考文献

1. Gilbertson JR, Ho J, Anthony L, Jukic DM, Yagi Y, Parwani AV. Primary histologic diagnosis using automated whole slide imaging: a validation study. BMC clinical pathology. 2006;6:4. Epub 2006/04/29. doi: 10.1186/1472-6890-6-4. PubMed PMID: 16643664; PubMed Central PMCID: PMCPMC1525169.

2. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Archives of pathology & laboratory medicine. 2013;137(12):1710-22. Epub 2013/05/03. doi: 10.5858/arpa.2013-0093-CP. PubMed PMID: 23634907.

 Jukic DM, Drogowski LM, Martina J, Parwani AV. Clinical examination and validation of primary diagnosis in anatomic pathology using whole slide digital images. Archives of pathology & laboratory medicine. 2011;135(3):372-8. Epub 2011/03/04. doi: 10.1043/2009-0678-oa.1. PubMed PMID: 21366463.

4. Al-Janabi S, Huisman A, Nap M, Clarijs R, van Diest PJ. Whole slide images as a platform for initial diagnostics in histopathology in a medium-sized routine laboratory. Journal of clinical pathology. 2012;65(12):1107-11. Epub 2012/10/25. doi: 10.1136/jclinpath-2012-200878. PubMed PMID: 23093511.

5. Al-Janabi S, Huisman A, Vink A, Leguit RJ, Offerhaus GJ, ten Kate FJ, et al. Whole slide images for primary diagnostics of gastrointestinal tract pathology: a feasibility study. Human pathology. 2012;43(5):702-7. Epub 2011/09/23. doi: 10.1016/j.humpath.2011.06.017. PubMed PMID: 21937077.

6. Al-Janabi S, Huisman A, Vink A, Leguit RJ, Offerhaus GJ, Ten Kate FJ, et al. Whole slide images for primary diagnostics in dermatopathology: a feasibility study. Journal of clinical pathology. 2012;65(2):152-8. Epub 2011/10/28. doi: 10.1136/jclinpath-2011-200277. PubMed PMID: 22031590.

7. Al-Janabi S, Huisman A, Nikkels PG, ten Kate FJ, van Diest PJ. Whole slide images for primary diagnostics of paediatric pathology specimens: a feasibility study. Journal of clinical pathology. 2013;66(3):218-23. Epub 2012/12/04. doi: 10.1136/jclinpath-2012-201104. PubMed PMID: 23204560.

8. Bauer TW, Schoenfield L, Slaw RJ, Yerian L, Sun Z, Henricks WH. Validation of whole slide imaging for primary diagnosis in surgical pathology. Archives of pathology & laboratory medicine. 2013;137(4):518-24. Epub 2013/01/18. doi: 10.5858/arpa.2011-0678-OA. PubMed PMID: 23323732.

9. Krishnamurthy S, Mathews K, McClure S, Murray M, Gilcrease M, Albarracin C, et al. Multi-institutional comparison of whole slide digital imaging and optical microscopy for interpretation of hematoxylin-eosin-stained breast tissue sections. Archives of pathology & laboratory medicine. 2013;137(12):1733-9. Epub 2013/08/21. doi: 10.5858/arpa.2012-0437-OA. PubMed PMID: 23947655.

10. Al-Janabi S, Huisman A, Jonges GN, Ten Kate FJ, Goldschmeding R, van Diest PJ. Whole slide images for primary diagnostics of urinary system pathology: a feasibility study. Journal of renal injury prevention. 2014;3(4):91-6. Epub 2015/01/23. doi: 10.12861/jrip.2014.26. PubMed PMID: 25610886; PubMed Central PMCID: PMCPMC4301392.

11. Buck TP, Dilorio R, Havrilla L, O'Neill DG. Validation of a whole slide imaging system for primary diagnosis in surgical pathology: A community hospital experience. Journal of pathology informatics. 2014;5(1):43. Epub 2014/12/24. doi: 10.4103/2153-3539.145731. PubMed PMID:

25535591; PubMed Central PMCID: PMCPMC4260323.

12. Reyes C, Ikpatt OF, Nadji M, Cote RJ. Intra-observer reproducibility of whole slide imaging for the primary diagnosis of breast needle biopsies. Journal of pathology informatics. 2014;5(1):5. Epub 2014/04/18. doi: 10.4103/2153-3539.127814. PubMed PMID: 24741464; PubMed Central PMCID: PMCPMC3986536.

13. Ordi J, Castillo P, Saco A, Del Pino M, Ordi O, Rodriguez-Carunchio L, et al. Validation of whole slide imaging in the primary diagnosis of gynaecological pathology in a University Hospital. Journal of clinical pathology. 2015;68(1):33-9. Epub 2014/10/31. doi: 10.1136/jclinpath-2014-202524. PubMed PMID: 25355520.

14. Pekmezci M, Uysal SP, Orhan Y, Tihan T, Lee HS. Pitfalls in the use of whole slide imaging for the diagnosis of central nervous system tumors: A pilot study in surgical neuropathology. Journal of pathology informatics. 2016;7:25. Epub 2016/05/25. doi: 10.4103/2153-3539.181769. PubMed PMID: 27217975; PubMed Central PMCID: PMCPMC4872474.

 Snead DR, Tsang YW, Meskiri A, Kimani PK, Crossman R, Rajpoot NM, et al. Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology. 2016;68(7):1063-72. Epub 2015/09/27. doi: 10.1111/his.12879. PubMed PMID: 26409165.

16. Wack K, Drogowski L, Treloar M, Evans A, Ho J, Parwani A, et al. A multisite validation of whole slide imaging for primary diagnosis using standardized data collection and analysis. Journal of pathology informatics. 2016;7:49. Epub 2016/12/21. doi: 10.4103/2153-3539.194841. PubMed PMID: 27994941; PubMed Central PMCID: PMCPMC5139454.

Kent MN, Olsen TG, Feeser TA, Tesno KC, Moad JC, Conroy MP, et al. Diagnostic Accuracy of Virtual Pathology vs Traditional Microscopy in a Large Dermatopathology Study. JAMA dermatology. 2017;153(12):1285-91. Epub 2017/10/20. doi: 10.1001/jamadermatol.2017.3284. PubMed PMID: 29049424; PubMed Central PMCID: PMCPMC5817435.

18. Saco A, Diaz A, Hernandez M, Martinez D, Montironi C, Castillo P, et al. Validation of whole-slide imaging in the primary diagnosis of liver biopsies in a University Hospital. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2017;49(11):1240-6. Epub 2017/08/07. doi: 10.1016/j.dld.2017.07.002. PubMed PMID: 28780052.

19. Tabata K, Mori I, Sasaki T, Itoh T, Shiraishi T, Yoshimi N, et al. Whole-slide imaging at primary pathological diagnosis: Validation of whole-slide imaging-based primary pathological diagnosis at twelve Japanese academic institutes. Pathology international. 2017;67(11):547-54. Epub 2017/10/06. doi: 10.1111/pin.12590. PubMed PMID: 28980740.

20. Araujo ALD, Amaral-Silva GK, Fonseca FP, Palmier NR, Lopes MA, Speight PM, et al.

Validation of digital microscopy in the histopathological diagnoses of oral diseases. Virchows Archiv : an international journal of pathology. 2018;473(3):321-7. Epub 2018/06/03. doi: 10.1007/s00428-018-2382-5. PubMed PMID: 29858684.

21. Lee JJ, Jedrych J, Pantanowitz L, Ho J. Validation of Digital Pathology for Primary Histopathological Diagnosis of Routine, Inflammatory Dermatopathology Cases. The American Journal of dermatopathology. 2018;40(1):17-23. Epub 2017/08/02. doi: 10.1097/dad.00000000000888. PubMed PMID: 28763335.

22. Mukhopadhyay S, Feldman MD, Abels E, Ashfaq R, Beltaifa S, Cacciabeve NG, et al. Whole Slide Imaging Versus Microscopy for Primary Diagnosis in Surgical Pathology: A Multicenter Blinded Randomized Noninferiority Study of 1992 Cases (Pivotal Study). The American journal of surgical pathology. 2018;42(1):39-52. Epub 2017/09/30. doi: 10.1097/pas.000000000000948. PubMed PMID: 28961557; PubMed Central PMCID: PMCPMC5737464.

23. Bernard C, Chandrakanth SA, Cornell IS, Dalton J, Evans A, Garcia BM, et al. Guidelines from the Canadian Association of Pathologists for establishing a telepathology service for anatomic pathology using whole-slide imaging. Journal of pathology informatics. 2014;5(1):15. Epub 2014/05/21. doi: 10.4103/2153-3539.129455. PubMed PMID: 24843826; PubMed Central PMCID: PMCPMC4023030.

解説文中の AMED 森班の研究成果は以下の研究会で発表されたものである。

第17回日本デジタルパソロジー研究会総会 呉 2018.8.30, pp36-41.

- 病理医及び口腔病理医を対象にしたトレーニングコースの構築とその必要性を検証す る研究 福岡順也、黒田揮志夫、藤村省太、佐藤俊太朗、藤本淳也、森一郎
- 2. WSI によるエキスパートダブルチェック(施設外コンサルテーション)の診断精度を比 較す る研究 藤村省太、黒田揮志夫、佐藤俊太朗、加島志郎、吉見直己、伊藤智雄、青 山肇、前田一 郎、森一郎、福岡順也
- 3. 悪性リンパ腫診断における WSI の有用性 伊藤智雄、Saiful Amin, 毛利太郎
- Whole Slide Image による胃生検標本における H.pylori 感染および炎症の評価 青山肇、 大門勇太、玉城智子、松本裕文、松崎晶子、吉見直己
- デジタル病理技術による Turnaround Time (TAT)短縮の検証研究 小菅則豪、池間龍也、 青山 肇、吉見直己
- 6. Whole slide imaging (WSI)に最適な HE 染色とは 吉澤明彦

CQ 2

WSI を用いてリンパ腫の診断は可能か

Answer: 適切な免疫染色を併用すれば正確な診断が可能である。

解説:

リンパ腫は多数の型を有し、またそれらが相互に類似した組織形態をとるという特徴が ある。専門性が高く、細胞像の詳細な観察が必要なことから、これまで WSI での診断は困 難と考えられ、多くの WSI 診断の有効性の検討で、その対象から外されてきた[1,2]。しか し、リンパ腫の病理組織学的診断は HE 染色のみで完結することはなく、ほぼ例外なく免疫 染色を併用することから、より再現性が高い診断が可能な分野とも言える。WSI のリンパ 腫診断に対する適格性に焦点を当てた論文は 2018 年現在では存在しないが、AMED 森班 の伊藤らのグループによる 110 例に対する検証実験が報告された。この研究では 20 倍スキ ャンで WSI 化された 110 例のリンパ腫スタディセット(非腫瘍性病変 4 例を含む)を用い、 研究協力者によって WSI の診断環境を模擬的に作成し、十分な wash out time (2年以上)を 確保した上で、同一診断者によるガラススライドによる診断と WSI 診断の比較が行われた。 完全一致を concordance、治療方針に影響のない軽微な違いを minor discrepancy、診断に 影響のある相違があった場合は major discrepancy とした。その結果、concordance は 90% (95%CI 82.4-94.9)であり、minor discrepancy 8.2% (95%CI 3.8-15.0)、major discrepancy 1.8% (95%CI 0.22-6.41)であった。minor discrepancy は大部分が濾胞性リンパ腫のグレー ドの差異であり、ガラススライドを用いても同様の結果になったと考えられる。major discrepancy の2例はガラススライドでも診断困難な例であり、両者ともに現実の診断では WSIのみで診断することは考えられず、ガラススライドでの再確認、また、遺伝子再構成や フローサイトメトリーなどの情報を併せた慎重な判断を行う症例と考えられるものであっ た。

この結果から、WSI でも再現性の高い診断は可能であるが、一部の診断困難例ではガラ ススライドを用いた確認や遺伝子再構成、フローサイトメトリーなどの情報を併せた総合 診断が必要といえる。

文献:

- Bauer TW, Schoenfield L, Slaw RJ, Yerian L, Sun Z, Henricks WH. Validation of whole slide imaging for primary diagnosis in surgical pathology. Arch Pathol Lab Med. 137(4):518-24, 2013
- 2) Tabata K, Mori I, Sasaki T, Itoh T, Shiraishi T, Yoshimi N, Maeda I, Harada O, Taniyama

K, Taniyama D, Watanabe M, Mikami Y, Sato S, Kashima Y, Fujimura S, Fukuoka J. Whole-slide imaging at primary pathological diagnosis: Validation of whole-slide imaging-based primary pathological diagnosis at twelve Japanese academic institutes. Pathol Int. 67(11):547-554, 2017

検索年限 出版年 2000 年 1 月 1 日~2018 年 8 月 31 日 検索式 wsi [All Fields] AND ("lymphoma"[MeSH Terms] OR "lymphoma"[All Fields]) AND validation[All Fields] 上の結果にハンドサーチで調べた文献を加えて選定した。

WSI で Helicobacter pylori は診断できるか

Answer:

WSI による胃生検標本での H. pylori の検出には、Z スタックの利用もしくは免疫染色を用いることが推奨される。

解説:

胃生検標本の鏡検による H. pylori 感染の診断は、特にギムザ染色を用いた場合他の検査 法と遜色のない感度・特異度を示す [1]。しかし H. pylori のような微生物は、現在通常使 用されている対物 40 倍モードでの WSI スキャンでは検出が困難とする報告もある [2]。

Kalinski T らは WSI による H. pylori 感染を含む胃炎の評価を検証した[3]。胃生検ギム ザ染色標本を対象に Updated Sydney System に準じて慢性炎症、好中球浸潤、腸上皮化生、 そして H. pylori 感染を評価しているが、特に H. pylori 感染については Z スタック機能を 用いた評価が有用であり、さらにその Z 軸ステップ数が多いほど鏡検での評価に近づいた。

しかし、Z スタック機能はスキャン時間およびデータ量が大幅に増すことからルーチンで の使用は困難である。Z スタック機能を用いない方法を検証することを目的に、AMED 森 班の青山らのグループは、WSI でギムザ染色標本および抗 H. pylori 抗体免疫染色標本 (IHC)を対象に H. pylori 感染を含む胃炎の評価を検証した。鏡検法による判定を対照とし た WSI による H. pylori 感染の判定は、ギムザ標本で感度 0.562(0.516-0.608,95%CI 以下同 じ),特異度 0.818(0.782-0.853), IHC 標本で感度 0.860(0.821-0.898),特異度 0.928(0.900-0.957)であり、IHC 標本であれば実用に足る検出力と考えられた。また慢性炎症、好中球浸 潤、腸上皮化生の WSI による判定については、腸上皮化生の評価は鏡検法と遜色ないもの の、慢性炎症の評価では特異度が、好中球浸潤の評価では感度が、それぞれ落ちることを示 した。

以上より、WSI による H. pylori の検出には、Z スタックの利用もしくは免疫染色を用いることが推奨される。

参考文献:

- 浅香 正博, 上村 直実, 太田 浩良, 加藤 元嗣, 佐藤 貴一, 菅野 健太郎, 杉山 敏郎, 高橋 信一, 福田 能啓, 村上 和成, 日本ヘリコバクター学会ガイドライン作成委員会 編. H.pylori 感染の診断と治療のガイドライン 2009 改訂版. 日本ヘリコバクター学会 誌. 2009; 10 巻 Suppl. Page1-25
- 2) Snead DR, Tsang YW, Meskiri A, Kimani PK, Crossman R, Rajpoot NM, Blessing E,

Chen K, Gopalakrishnan K, Matthews P, Momtahan N, Read-Jones S, Sah S, Simmons E, Sinha B, Suortamo S, Yeo Y, El Daly H, Cree IA. Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology. 2016 Jun;68(7):1063-72. doi: 10.1111/his.12879. Epub 2015 Dec 6. PMID: 26409165.

 Kalinski T, Zwönitzer R, Sel S, Evert M, Guenther T, Hofmann H, Bernarding J, Roessner A. Virtual 3D microscopy using multiplane whole slide images in diagnostic pathology. Am J Clin Pathol. 2008 Aug;130(2):259-64. doi: 10.1309/QAM22Y85QCV5JM47. PMID: 18628096.

検索年限 出版年 2000 年 1 月 1 日~2018 年 9 月 13 日

検索式

Pubmed

- #1: whole slide imaging
- #2: virtual microscopy
- #3: digital pathology
- #4: digital microscopy
- #5: Helicobacter pylori
- #6: (#1 OR #2 OR #3 OR #4) AND #5
- 上の結果にハンドサーチで調べた文献を加えて選定した。

CQ4 WSI は施設内標本の診断における Turn Around Time (TAT)の短縮に役立つか。

Answer:

施設内標本の診断における TAT の短縮に関しては限定されるものの、インターフェースの 利用によりダブルチェックの TAT の短縮に役立つ。なお、WSI システムの利用経験は TAT 短縮に影響する。

解說:

欧米において、WSI 利用における臨床側にもたらす広義の TAT の検討はシステマティッ クレビューでは認められないものの、病理医が個々の標本を検鏡する時間 (reading time;RT)は、Mukhopadhyay S ら[1]や Mills AM ら[2]による報告では、ガラススライドを 用いた診断と WSI を用いた診断の RT に関して、数秒程度 WSI 利用に時間が要するもの の、有意な差はないとしている。なお、Mills AM ら[2]による報告では、初心者がやや不慣 れで RT が遅くなっている可能性を指摘されている。

ダブルチェックでは、AMED 森班の前田らのグループによる報告では、独自のダブルチ ェックのためのインターフェースを有するアプリケーションでの WSI 利用により TAT の 短縮傾向がみられた。

文献:

- 3) Mukhopadhyay S, Feldman MD, Abels E, et al. Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study). Am J Surg Pathol. 2018;42:39–52.
- Mills AM, Gradecki SE, Horton BJ, et al. Diagnostic efficiency in digital pathology: a comparison of optical versus digital assess- ment in 510 surgical pathology cases. Am J Surg Pathol. 2018;42:53–59.

檢索年限 出版年 2000 年 1 月 1 日~2018 年 9 月 13 日 検索式 Pubmed #1: whole slide imaging #2: virtual microscopy #3: digital pathology #4: digital microscopy #5: turnaround time #6: (#1 OR #2 OR #3 OR #4) AND #5 上の結果にハンドサーチで調べた文献を加えて選定した。

CQ5 WSI は遠隔地施設標本の診断における TAT の短縮に役立つか。

Answer:

遠隔地施設標本の診断における TAT の短縮に役立つ。

解説:

遠隔地施設標本の診断には、エキスパートへのコンサルテーションによる診断と、 telepathology (テレパソロジー)と呼称される遠隔地施設における標本の診断がある。

コンサルテーションによる診断では、通常ガラス標本の梱包と送付がなされている。WSI 利用では、原則的にそうした作業を有さないため、TATの短縮が充分に予想される。実際、 Vergani A ら[1]は従来の平均 12 日ほどが、WSI 利用で平均 1.4 日に短縮したと報告してい る。Têtu BPG ら[2]は、カナダにおいての遠隔ネットワークシステムの中で、WSI 利用の エキスパート診断により、68%の症例が 24 時間以内で対応できたと報告している。

テレパソロジーと呼称される診断では、直接的にガラススライドを利用したライブモー ドと、ガラススライドをWSIに変換し利用するモードの2通りで実施されている。ともに、 遠隔地での病理診断であるため、ガラススライドの梱包を含めた搬送が必要であるため、単 にTAT 短縮のみならず、搬送時の事故などの想定を考えれば、有効な手段であることは明 白なであり、優位性を有している。文献的には、前述のカナダにおける遠隔ネットワークシ ステムの中では、迅速診断が約20分で対応でき、施設内での迅速診断と非劣化を示してい る[2]。本邦内では、テレパソロジーに関しては、2000年以前から、種々の施設で独自に実 施していていたが、2001年には日本テレパソロジー研究会発足とともに、研究されてきた 歴史がある[3]。加えて、AMED 森班の小菅らによる報告では、沖縄離島でのTAT の短縮 に役立った。

文献:

- Vergani A, Regis B, Jocolle G, Patetta R, Rossi G. Noninferiority Diagnostic Value, but Also Economic and Turnaround Time Advantages From Digital Pathology. Am J Surg Pathol. 2018; 42: 841-842.
- Têtu BPG, Trudel MC., Meyer J, Gould PV, Saikali S, Orain M, Nadeau L, Nguyen BN. Whole-slide imaging-based telepathology in geographically dispersed Healthcare Networks. The Eastern Québec Telepathology project. Diagnositc Histopathology. 2014; 20: 462.
- Telepathology in Japan. Development and Practice. (Ed. Sawai T), CELC Inc, Morioka, 2007.

検索年限 出版年 2000 年 1 月 1 日~2018 年 9 月 13 日 検索式: Pubmed #1: whole slide imaging #2: virtual microscopy #3: digital pathology #4: digital microscopy #5: turnaround time #6: (#1 OR #2 OR #3 OR #4) AND #5 上の結果にハンドサーチで調べた文献を加えて選定した。